Chapter 2 Discrete Routh Reduction

نویسندگان

  • Sameer M. Jalnapurkar
  • Jerrold E. Marsden
چکیده

This chapter investigates the relationship between Routh symmetry reduction and time discretization for Lagrangian systems. Within the framework of discrete variational mechanics, a discrete Routh reduction theory is constructed for the case of abelian group actions, and extended to systems with constraints and non-conservative forcing or dissipation. Variational Runge–Kutta discretizations are considered in detail, including the extent to which symmetry reduction and discretization commute. In addition, we obtain the Reduced Symplectic Runge–Kutta algorithm, which can be considered a discrete analogue of cotangent bundle reduction. We demonstrate these techniques numerically for satellite dynamics about the Earth with a non-spherical J2 correction, and the double spherical pendulum. The J2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, and one can directly observe interesting dynamical structures. The main point of the double spherical pendulum is to provide an example with a nontrivial magnetic term in which our method is still efficient, but is challenging to implement using a standard method. 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Reduction of Large Scale Systems: A Discrete Time Interval Approach

In this paper an extended approach for order reduction of complex discrete uncertain systems is proposed. Using Interval arithmetic Routh Stability arrays are formed to obtained numerator and denominator of reduced order model. The developed approach preserves the stability aspect of reduced system if higher order uncertain system is stable. A numerical example is included to illustrate the pro...

متن کامل

Discrete Routh Reduction and Discrete Exterior Calculus

This paper will review recent advances in the formulation of a discrete version of geometric mechanics, based on the discretization of Hamilton’s variational principle, and progress that has been made in reduction theory for discrete variational mechanics in the form of Discrete Routh Reduction. To place discrete geometric mechanics on a firm mathematical foundation, we propose to develop a dis...

متن کامل

Routh Reduction by Stages

This paper deals with the Lagrangian analogue of symplectic or point reduction by stages. We develop Routh reduction as a reduction technique that preserves the Lagrangian nature of the dynamics. To do so we heavily rely on the relation between Routh reduction and cotangent symplectic reduction. The main results in this paper are: (i) we develop a class of so called magnetic Lagrangian systems ...

متن کامل

Reducing Model Ordering using Routh Approximation Method

The Higher order systems are frequently too arduous to be used in real time applications. Model order reduction was developed in the areas of systems and control theory, which studied properties of dynamical systems in application for reducing their complexity, while preserving their input-output behavior as much as possible. Routh approximation method (RAM) is one of the most elegant methods o...

متن کامل

Reduction of Linear Time-Invariant Systems Using Routh-Approximation and PSO

Order reduction of linear-time invariant systems employing two methods; one using the advantages of Routh approximation and other by an evolutionary technique is presented in this paper. In Routh approximation method the denominator of the reduced order model is obtained using Routh approximation while the numerator of the reduced order model is determined using the indirect approach of retaini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004